
  

  

Abstract— NASA’s next generation space communications 
network will involve dynamic and autonomous services 
analogous to services provided by current terrestrial wireless 
networks. This architecture concept, known as the Space Mobile 
Network (SMN), is enabled by several technologies now in 
development. A pillar of the SMN architecture is the 
establishment and utilization of a continuous bidirectional 
control plane space link channel and a new User Initiated 
Service (UIS) protocol to enable more dynamic and autonomous 
mission operations concepts, reduced user space 
communications planning burden, and more efficient and 
effective provider network resource utilization. This paper 
provides preliminary results from the application of model-
driven architecture methodology to develop UIS. Such an 
approach is necessary to ensure systematic investigation of 
several open questions concerning the efficiency, robustness, 
interoperability, scalability and security of the control plane 
space link and UIS protocol.  

I. INTRODUCTION 

The Space Mobile Network (SMN) is NASA’s next 
generation architecture concept for space communications. It 
will provide more dynamic and autonomous communications 
services, analogous to those provided by modern wireless 
terrestrial networks. The SMN architecture consists of a suite 
of emerging technologies, including high-availability space 
link channels, delay tolerant networking and other new 
protocols, optical communications, and advanced position, 
navigation and timing technologies [1]. Software and data 
systems engineering play a key role in the transition to the 
SMN architecture, enabling interoperability among new and 
legacy elements, virtualization through software defined 
radios and other network resources, and automation of 
processes. Infusion, adaptation and extension of terrestrial 
wireless communications network best practices are also 
desirable, where appropriate [2].   

A rigorous model-driven architecture methodology is 
necessary to ensure and manage the desired holistic properties 
of the SMN, given the necessarily piecemeal implementation 
and infusion of new elements. This methodology utilizes 
object-oriented modeling, computational process simulation, 
virtual and physical prototyping, and technology 
demonstration activities are methods to generate architectural 
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data and experiential learning [3]. It allows architects to 
characterize predicted and unanticipated emergent behaviors 
among new and legacy elements, their interactions with 
environmental factors, and system performance under various 
conditions, including nominal, stress, and fault scenarios.  

Object-oriented modeling emerged from the discipline of 
software engineering, but is gaining acceptance as a more 
generalized systems engineering method [4]. More responsive 
development processes, such as spiral, evolutionary and agile 
processes, are also being applied to systems engineering 
efforts [3]. These software-inspired methods and processes 
leverage design commonality and patterns, accommodate the 
reality that a complete set of fully specified requirements is 
often unknowable at the outset of the design effort, and are 
responsive to changes in user needs or external conditions, 
which may invalidate some requirements over time. Modern 
software-enabled information-intensive systems, such as the 
SMN, have requirements that are somewhat provisional, as 
they are subject to change based on experiential learning or 
dynamic externalities, and consist of heterogeneous elements 
at various degrees of maturity and obsolescence. A model-
driven architecture methodology enables and enforces multi-
faceted system evolution by providing the architect and other 
system stakeholders with the perspectives and tools to 
understand and manage the complexity of these systems over 
time [3].   

The traditional paradigm for space mission operations 
relies on highly scripted pre-planned processes between 
people at space communications service providers and user 
mission operations centers. Communications with user 
mission platforms are typically intermittent, due to orbital, 
geographic, and other space link resource constraints. Today, 
there is limited or no automation on the user mission platform 
for invoking space communications services in response to 
dynamic events, or in the provider network for service 
provisioning [1]. This paper provides preliminary results from 
the application of a model-driven architecture methodology to 
develop a more dynamic and autonomous Space Mobile 
Network communications concept, known as User Initiated 
Services (UIS).  
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The benefits of UIS include enabling new event-driven and 
collaborative platform mission operations concepts, reduced 
user burden for space communications service planning, and 
more efficient and effective provider network resource 
utilization. UIS is intended to be widely adopted, and 
available from NASA and worldwide space communications 
providers  [1]. 

II. UIS ARCHITECTURE MODEL 

The UIS concept requires the definition and utilization of a 
highly-available (i.e., continuous or nearly so) bidirectional 
communications channel through which users may invoke 
space communications services (i.e., request a resource 
agnostic service event, typically for higher data rate/lower 
availability links) and exchange disposition messages with the 
provider network until a proposed service event is validated. 
It is also necessary to define the UIS protocol, consisting of 
the message types, data structures, machine-to-machine 
behavioral interaction sequences (including nominal, stress 
and fault scenarios), and any performance timing constraints, 
dependencies or interactions with other protocols in the stack. 
A model-driven architecture methodology using a rigorous 
and standardized object-oriented language, such as the 
Systems Modeling Language (SysML), implemented in a 
robust tool, such as MagicDraw, is well-suited for this 
challenge [3]. This section presents and discusses the top-
level structural and behavioral representations of the UIS 
system architecture. 

A. UIS Concept of Operations and Requirements 
UIS has as its distinguishing operational characteristic, user 

invocation of a resource agnostic space communications 
service event and automated service dispositioning between 
the user and space communications provider network. These 
communications occur through a highly available space link 
channel between user mission platform(s) and the space 
communications provider resources. Adopting the 
architectural taxonomy of the software defined networking 
community, this channel provides a control plane for UIS 
service request messages and service event dispositioning [5]. 
The need for high availability of the control plane space link 
likely drives the solution to space relay resources for near-
earth users [1]. For user mission data service provisioning and 
execution, higher data rate services may be provided by one 
or more space relay or direct-to-earth link resources. This UIS 
operational concept is depicted in Figure 1.   

 
 
 
 
 
 
 

 
Figure 1: UIS space link concept of operations  

Once a user service request message is received by the 
provider, orchestration of several software services is 
required to disposition the request. These may include UIS 
message format translation services, publish and subscribe 
services to space link resource scheduler(s), publish services 
to the forward (response) control plane space link resource, 
UIS thread/instance management services, fault detection and 
recovery services, cybersecurity services, service 
accountability reporting and data archiving services. User 
mission platforms or operations centers will also require 
several software services to implement UIS. These may 
include mission-specific UIS request initiation services, UIS 
message format translation services into platform command 
sequences, status monitoring and UIS event response 
services, fault detection and recovery services, and advanced 
position, navigation and timing services.  

This concept of operations has led to a provisional set of 
UIS capability requirements, capturing stakeholder needs and 
constraints in Table 1. The purpose of this set of capability 
requirements is to focus and guide the architectural modeling, 
simulation, prototyping and demonstration activities. More 
refined and detailed requirements will emerge based on 
iterative analysis, synthesis and evaluation of results from 
these activities.  

 
Table 1: Provisional UIS capability requirements 

Id Name Type Text 
UIS1 1.1 Event-Based 

Requests 
Functional The UIS system shall autonomously initiate space 

communication service requests based on specified 
mission-specific events of conditions. 

UIS2 1.2 Service Request 
Ingest 

Functional The UIS system shall ingest space communications 
service requests. 

UIS3 1.3 Route Service 
Requests 

Functional The UIS system shall route user-initiated service 
requests for disposition processing. 

UIS4 1.4 Broker with External 
Schedulers 

Functional The UIS system shall broker UIS task dispositioning 
with external scheduling resources. 

UIS5 1.5 Configuration 
Brokering 

Functional The UIS system shall broker configuration of space 
communications link resources associated with UIS 
tasks. 

UIS6 1.6 Synchronization  Functional The UIS system shall provide synchronization 
mechanisms among (internal and external) elements 
involved in UIS instance collaborations. 

UIS7 1.7 Execution 
Performance 

Functional The UIS system shall execute UIS space 
communications instances within network and mission-
specified performance. 

UIS8 1.8 Service Accounting Functional The UIS system shall provide accountability reporting. 
UIS9 1.9 Monitor Status Functional The UIS system shall monitor UIS service instance 

status. 
UIS10 1.10 Report QoS Metrics Functional The UIS system shall provide status reporting on 

Quality of Service metric performance. 
UIS11 1.11 Enforce SLAs Functional The UIS system shall enforce mission-specific Service 

Level Agreements. 
UIS12 1.12 Notification Functional The UIS system shall notify users of conditions 

affecting UIS services. 
UIS13 1.13 Fault Detection and 

Recovery 
Functional The UIS system shall provide fault detection, isolation 

and recovery mechanisms. 
UIS14 1.14 Archival Functional The UIS system shall archive UIS data. 



  

UIS15 1.15 Operational 
Availability 

Performance The UIS system shall achieve operational availability 
requirements (mission or deployment specific). 

UIS16 1.16 Reliability Performance The UIS system shall achieve reliability requirements 
(mission or deployment specific). 

UIS17 1.17 Compatibility  Design 
Constraint 

The UIS system shall achieve compatibility with existing 
operations, maintenance and logistics organizations, 
resources and processes. 

UIS18 1.18 Enterprise Security Design 
Constraint 

The UIS system shall conform to enterprise 
cybersecurity standards, policies and directives.  

  

B. UIS Use Case Model 
UIS is an extension of existing space communications 

services, enabled by the infusion of automation and 
orchestration technologies across a heterogeneous mix of 
legacy and new elements. 

Figure 2 documents traditional Tier 1 and Tier 2 space 
communications use cases, and relates UIS as an extension to 
these use cases. Usage dependencies are illustrated where one 
element requires another element for its full implementation. 
The usage dependencies depicted in Figure 2 establish that all 
user mission operations use cases (i.e., near-earth, deep space 
and celestial-body surface) have dependencies on space 
communications services, and that the provisioning of space 
communications services are, in turn, dependent on network 
infrastructure support services. The scope of this preliminary 
model is limited to investigation of the near-earth operational 
use case because these scenarios impose the most demanding 
latency requirements on the UIS architecture, have the 
greatest number of potential users, and provide more readily 
accessible opportunities for on-orbit demonstrations that are 
essential to mature and validate UIS technologies. However, 
the UIS concept is envisioned to be extended to deep space 
and celestial surface operational use cases. As indicated by 

the use case diagram, there are no envisioned extensions to 
the network infrastructure support behaviors to enable UIS. 

C. UIS Structural Domain Model 
To facilitate widespread infusion of UIS technologies and 

adoption of UIS, the UIS system must realize open 
architecture principles, including modularity, loose coupling, 
interoperability, and scalability. The deployment strategy 
must accommodate UIS software modules implementing 
UIS-enabling services in heterogeneous computational 
runtime-environments, and on elements of both mission user 
and space communications provider owned resources in space 
and on the ground.  

In a model-driven architecture, the objective is to establish 
a top-level structural partitioning that supports realization of 
open architecture principles [3]. This is achieved by grouping 
related system information and activities into domains, which 
collaborate to perform major system behaviors. These 
domains also establish the basis for allocating requirements to 
system resources. Interfaces between the domains are often 
opportunities for standardization. Figure 3 illustrates the 
domain partitioning of the UIS architecture in a block 
definition diagram. Each domain element includes the 
operations of the domain and associated values, which define 
the system functions and information associated with the 
element, respectively.  
 UIS enables the transition from a “human-in-the-loop” 
paradigm to a more dynamic “human-on-the-loop,” or fully 
autonomous operations. As a result, the user roles for the UIS 
system, indicated in the use case diagram and domain 

Figure	2:	User	Initiated	Services	extend	traditional	space	communications	use	cases 



  

block definition diagram, are rather limited. User Mission 
Operations Manager, Network Manager and Support 
Personnel roles are defined. External system resources also 
take the form of user roles in SysML, but none have been 
identified for UIS at this time. 

D. UIS Activity Model 
  In a model-driven architecture, system structure and 
behavior are rigorously defined. Refinements to ensure 
completeness, correctness and consistency are made as 

system understanding is matured through stakeholder 
feedback, new information and ideas, and results from 
modeling, simulation, prototyping and demonstrations at 
various levels of the system hierarchy. Definition of 
capability requirements and use cases are typically followed 
by structural partitioning into domains, which forms the 
basis for requirements allocation to system resources. An 
activity diagram furthers the architectural specification, and 
illustrates a thread of activities across the previously defined 
structural domains and user roles to perform a major system 

Figure	3:	Domain	partitioning	of	the	UIS	architecture	block	definition	diagram 

Figure	4:	Nominal	UIS	service	instance	activity	flow	diagram 



  

behavior [3]. The construction of an activity diagram 
provides an early test of the correctness, completeness and 
consistency of the architecture modeling performed to this 
point. An activity diagram showing a nominal instance of a 
user service request, disposition and service event execution 
is provided in Figure 4. The activity diagram establishes 
control flows and object flows across the structural domains 
and user roles. Space link control plane interactions 
enabling user service request and dispositioning behaviors, 
as well as behavioral interactions within the user mission 
data plane, occur in the Network Link Execution domain. 
Further decomposition of this domain is necessary to 
address questions associated with the allocation of these 
functions to space link resources. This is accomplished 
through standardized object-oriented SysML artifacts, 
including structural representations using block definition 
diagrams and internal block diagrams, and behavioral 
representations using state machine and sequence diagrams. 
As discussed previously, the high availability requirement 
of the control plane space link will likely drive solutions to 
a space relay resource capable of supporting multiple 
simultaneous UIS service instances, while the user mission 
data plane space link may be instantiated by space relay and 
direct-to-earth link resources with more limited availability. 
The architectural model provides the structural and 
behavioral framework within which these physical system 
tradeoffs occur, enabling rigor and specificity on trade 
criteria and ensuring traceability throughout the system 
hierarchy.  

E. UIS Message Data Modeling 
Data modeling is a critically important aspect of 

architecting information intensive systems, and often begins 

through the iterative process of developing an activity 
diagram [3]. Conceptual data objects represent the 
information content of the architecture, and are exchanged 
among the domains in the object flow of the activity diagram. 
Using the inheritance properties of object-oriented languages, 
these conceptual data objects may be grouped and abstracted 
into foundational classes that describe broad categories of 
data content. Common foundation classes in information-
intensive systems include plans, tasks, reports and messages 
[3]. The logical data model is a level of abstraction below the 
conceptual level, and describes the structure of conceptual 
data objects in accordance with the inheritance, associations 
and other relationships defined previously. The user service 
request message provides an illustrative example of this 
concept.  

A user service request message must specify the attributes 
of the requested space communications services. This 
message includes a header and a payload. The header 
information includes data about the message type and 
transaction. The payload information includes transaction 
setup and service request data. Figure 5 illustrates a 
preliminary user request message logical data structure block 
definition diagram for the request of a space link resource 
agnostic telemetry service event for downlinking a user 
specified data volume within a user specified deadline.  

This logical data structure accommodates future protocol 
versions, fault management, error correction, authentication, 
confidentiality, integrity and non-repudiation mechanisms, 
identity information supporting thread management, 
archiving and retrieval, and quality of service information 
such as user mission data volume, urgency and the user 
specified deadline.  

Figure	5:	Logical	data	model	of	a	UIS	user	service	request	message 



  

III. DISCUSSION 
As documented in this paper, the use of a model-driven 

architecture methodology provides several advantages over 
the more common ad-hoc systems architecting approach. 
Standardized object-oriented languages originating in the 
software engineering discipline have been extended to better 
meet the needs of systems architecting. SysML artifacts, 
including requirements, structural and behavioral diagrams 
facilitate traceability, consistency and rigorous analysis, 
synthesis and evaluation at all levels of the system hierarchy.  

UIS provisional capability requirements, relationships to 
traditional mission operations and space communications use 
cases, and the top-level UIS structural, behavioral and data 
models have been defined. Further UIS architectural 
specification, in accordance with the model-driven 
architecture methodology, is necessary to understand and 
evaluate alternative UIS protocol and space link control plane 
design trades.  

In addition to the static object-oriented modeling presented 
in this paper, computationally executable architectural 
simulations are possible in SysML. In conjunction with more 
traditional engineering simulation packages, these executable 
models may be calibrated with experimental results from 
prototyping and demonstrations. This powerful approach 
allows induction of architectural performance and other 
characteristics, informing key trade-offs at various levels of 
the system hierarchy.  

For UIS, key performance metrics and trade-offs may 
concern the minimum, maximum and expected user wait time 
elapsed between service invocation and execution under 
various conditions, the physical data volume of alternative 
UIS message data structures, the quantity of interactions to 
invoke, disposition and execute UIS service instances, as well 
as the control plane bandwidth and simultaneous service 
instance capacity.   

Computational simulation methods may also be used to 
explore enterprise-level performance and emergent 
behaviors, such as those pertaining to end-to-end service 
disposition dynamics, including space-terrestrial network 
traffic analysis, space-terrestrial resource scheduling policy, 
and multi-criteria optimization trade-offs. Additional 
investigations may pertain to the impacts of federating 
resource event scheduling to multiple providers (e.g., U.S. 
government, international, and commercial), and the impacts 
of dynamic entry and exit of both users and provider resources 
due to weather, asset maintenance or other service constraints 
or enablers.  

At each stage of development, insights from simulations, 
prototypes and demonstrations will be fed back into the UIS 
architecture model, resulting in an iterative, evidence-based, 
consistent, cohesive and traceable system evolution. This 
process is expected to maximize the likelihood of infusing 
UIS enabling technologies, and ultimately widespread 
adoption of user initiated services.  

IV. CONCLUSION 
NASA’s Space Mobile Network will involve dynamic and 

autonomous services analogous to services provided by 

current terrestrial wireless networks. A new service concept 
under this paradigm, known as User Initiated Services, 
extends traditional highly scripted mission operations and 
space communications use cases through infusion of 
software-enabled services across the user and space 
communications provider domains. UIS will enable more 
event-driven and collaborative mission operations concepts, 
reduced user space communications planning burden, and 
more efficient and effective provider network resource 
utilization.  

To realize the UIS concept, a continuously available space 
link control plane must be defined and established to support 
bidirectional communications between the user and provider 
network. In addition, a new protocol must be defined 
specifying message data structures, machine-to-machine 
behavioral sequences and rules, all within a heterogeneous, 
distributed, and evolving system and environmental context.  

This paper documents preliminary results from the 
application of model-driven architecture process to develop 
UIS, including provisional capability requirements, use cases, 
and the top-level system structural, behavioral and data 
models. Such an approach is necessary to ensure systematic 
investigation of several open questions concerning the 
efficiency, robustness, interoperability, scalability and 
security of the control plane space link and UIS protocol. 
Future work will focus on continued specification of the UIS 
architecture model, including iterative refinements based on 
analysis, synthesis and evaluation of results from 
computational simulation, virtual and physical prototyping, 
and demonstration activities. 
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